

« Formation hydraulique Chargés d'affaires »

Maîtrise Opérationnelle des Systèmes Hydrauliques L'Expertise Terrain pour une Performance Durable

1 – les normes

Peintures

Repérage des circuits

2 - Schéma

Repérage

Représentation symbolique

P&ID

3 - Huiles et Graisses

Notions sur les huiles

qu'est-ce qu'une huile industrielle?

normalisation

Propriétés fonctionnelles

Théorie de la lubrification

compatibilité

Notions de graissage

Qu'est-ce qu'une graisse?

Normalisation

Compatibilité

Technologie: double lignes et progressif

Dossier de lubrification d'une machine

4 - tuyauteries

DESP

Choix des tuyauteries

Dimensionnement

Conception

comment organiser la distribution des

tuyauteries

cheminement

dilatation

Supportage

Soudure

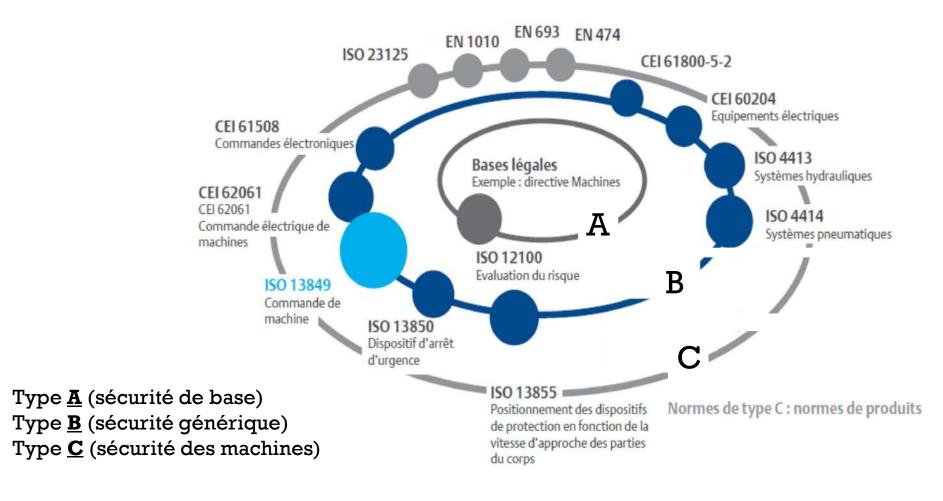
Cintrage

Flexibles hydrauliques

Tuyauteries pneumatiques

Nettoyage - qualification - rinçage

5 - Fonctionnement


bloc foré

Vérin hydraulique

6 - Aspect pratiques

Agencement d'une centrale hydraulique TPM à la conception

La nébuleuse des normes

spécifications de peinture ISO 12944

Partie 1 – Introduction générale

La Partie 1 définit le domaine général d'application, donne quelques termes et définitions de base et fournit une introduction générale aux autres parties de la norme. Elle comprend également les classes de durabilité qui indiquent la durée de vie prévue d'un système de peinture.

Classes de durabilité	Précédemment	NOUVEAU
Durabilité limitée (L)	2 à 5 ans	jusqu'à 7 ans
Durabilité moyenne (M)	5 à 15 ans	7 à 15 ans
Durabilité haute (H)	> 15 ans	15 à 25 ans
NOUVEAU Durabilité très haute (VH)	_	> 25 ans

spécifications de peinture ISO 12944

Partie 2 – Classification des environnements

La Partie 2 traite de la classification des principaux environnements auxquels sont exposées les structures en acier peintes. Il existe deux catégories principales : les conditions atmosphériques et les conditions immergées.

Catégories de corrosivité – Conditions atmosphériques

spécifications de peinture ISO 12944

Partie 5 – Systèmes de peinture

Acrylique Polyuréthane Epoxy

Nouvelle classe de durabilité ; nouvelles valeurs d'EFS

Durabilité		Durabilité Limitée (I)		Mo	Moyenne (m)			Haute (h)		
Туре	e de primaire	Zn (R)	Dive	ers	Zn (R)	Dive	ers	Zn (R) Div		ers
Base de	liant du primaire	ESI EP PUR	EP PUR ESI	AK AY	ESI EP PUR	EP PUR ESI	AK AY	ESI EP PUR	EP PUR ESI	AK AY
-	ase de liant uches suivantes	EP PUR AY	EP PUR AY	AK AY	EP PUR AY	EP PUR AY	AK AY	EP PUR AY	EP PUR AY	AK AY
NDCM					-	-	1	1	1	1
C2	EFSN			-	-	100	60	120	160	
	NDCM	_		1	1	1	1	2	2	2
C3	EFSN	_	-	100	60	120	160	160	180	200
2.0	NDCM	1	1	1	2	2	2	2	2	2
C4	EFSN	60	120	160	160	180	200	200	240	260
	NDCM	2	2	-	2	2	-	3	2	
C5	EFSN	160	180	_	200	240	_	260	300	

NOUVEAU Trè	es haute (vh)	
Zn (R)	Div	ers
ESI EP PUR	EP PUR ESI	AK AY
EP PUR AY	EP PUR AY	AK AY
2	2	2
160	180	200
2	2	2
200	240	260
3	2	-
260	300	-
3	3	-
320	360	-

La synthèse du NDCM (nombre de couches minimum) et de l'EFSN (épaisseur de film sec nominale) du système de peinture dépend des niveaux de durabilité et de corrosivité.

3 - Huiles et Graisses

Notions sur les huiles

qu'est-ce qu'une huile industrielle? normalisation Propriétés fonctionnelles Théorie de la lubrification compatibilité

Notions de graissage

Qu'est-ce qu'une graisse?

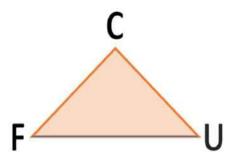
Normalisation

Compatibilité

Technologie:

double lignes

et progressif


Dossier de lubrification d'une machine

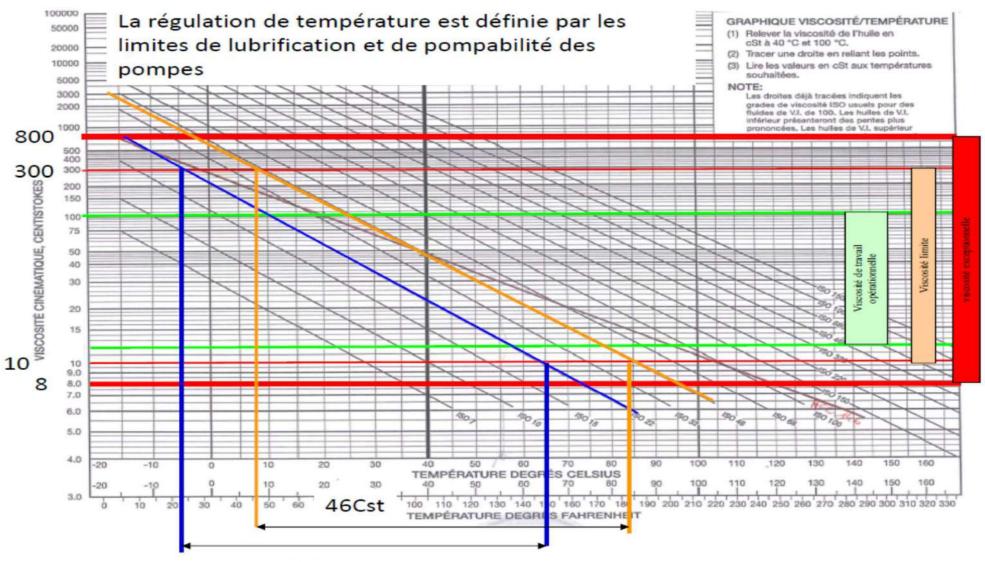
Notions sur les huiles

Choix du Fluide à utiliser

C = constructeur

Il définit le besoin, de son matériel, les propriétés fonctionnelles Exemple: ISO VG46 + liste des produits et des marques commerciales, périodicité de vidange, niveau de propreté

F = fournisseur (société de lubrifiant)


Il développe les produits demandés par les constructeurs. Il connait les contraintes des utilisateurs et préconise un produit

U = utilisateur

Il indique les conditions d'utilisation de la machine. (il suit les recommandations des uns et des autres

C'est le dialogue entre Utilisateurs et Fournisseurs qui est le plus important.

Notions sur les huiles

Notions sur les huiles

Le point de vue des tuyauteries

$$Q = \frac{\pi \cdot r^2 \cdot \Delta P}{8 \cdot \eta \cdot L}$$

$$Q = \frac{\text{débit}}{r = \text{rayon de la tuyauterie}}$$

$$Q$$

Le débit varie en fonction de la viscosité et des pertes de charges Les pertes de charges dépendent de la rugosité des tuyauteries et de la température du fluide

4 – tuyauteries

DESP

Choix des tuyauteries

Dimensionnement

Conception

comment organiser la

distribution des tuyauteries

cheminement

dilatation

Supportage

Soudure

Cintrage

Flexibles hydrauliques

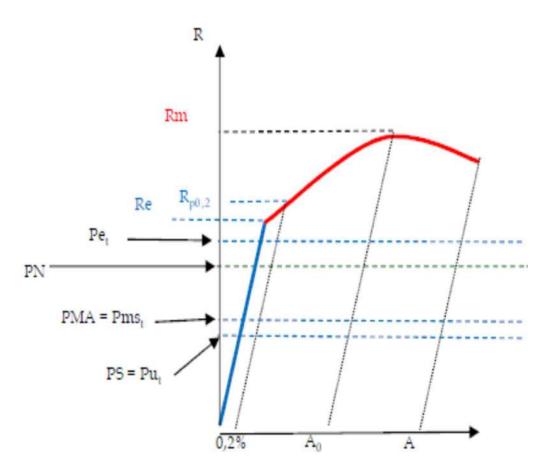
Tuyauteries pneumatiques

Nettoyage – qualification – rinçage

Tuyauteries DESP

codes de construction

Les codes de constructions sont des documents de référence sur les bonnes pratiques industrielles (techniques, juridiques, etc.) qui servent de guide entre les différents acteurs : acheteurs, fabricants et tiers.


Une spécification technique est un document de référence attaché à un contrat, qui fournit des détails techniques (c'est-à-dire technologiques) sur le produit acheté. Elle peut être basée sur des normes, des codes, des exigences spécifiques d'un acheteur ou les principes d'une réglementation.

Seule la Réglementation est imposée (DESP 97/23/CE).

	France	Europe	USA
récipients sous pression non soumis à la flamme	CODAP : 1862 pages	NF EN 13445	ASME VIII (+IX+V+II)
tuyauteries industrielles	CODETTI : 2292 pages	NF EN 15480	Tuyauterie électrique ASME B31.1 Tuyauterie de procédé ASME B31.3 Tuyauterie de réfrigération ASME B31.5

Tuyauteries

Définition des pressions

Pression de service (PS)

Pression de fonctionnement effective en continu (Pu = pression utile)

Pression de conception (PMA)

C'est la pression maximum admissible pour la DESP (Pmst = pression maximale de service)

- Pression de tarage du limiteur de pression de la pompe
- Pression de service maximale + 2 b (pour les circuits basse pression comme l'eau ou l'air comprimé)

Pression nominale (PN)

C'est la valeur de pression à utiliser pour concevoir tous les composants de tuyauterie

Équivalence des classes de pression :

Pression d'essai (PE)

C'est la pression de requalification dans la DESP (pression d'épreuve)

Tuyauteries hydrauliques Choix des tuyauteries

Normalisation des tubes selon les spécifications américaines

Les normes dimensionnelles (ANSI) et de qualité (ASTM)

Dans ce système, un tube est défini par son diamètre nominal en inches (notés ") qui est approximativement égal au diamètre intérieur du tube.

En ce qui concerne les épaisseurs, les tubes étaient à l'origine classés en trois séries qui subsistent encore (API) :

- Standard STD;
- Extra strong XS;
- Double extra strong XXS.

La normalisation actuelle est basée sur des séries isobares appelées schedules.

- ANSI/ASME B36-10 pour les tubes en acier
- ANSI/ASME B36-19 pour les tubes en INOX
- API 5L pour les nuances en acier à usage pétrolier (L'API 5L grade B est le plus couramment employé) Chaque schedule est caractérisé par un nombre qui est approximativement égal à :

1000 * pression/Contrainte admissible

L'utilisation des schedules permet de garantir la tenue à la même pression interne pour les accessoires et pour les tubes ; seule l'épaisseur des tubes pour chaque diamètre est calculée.

Tuyauteries hydrauliques Choix des tuyauteries

Diamètre des tubes acier :

Un diamètre est toujours donné par rapport au diamètre extérieur
Si l'épaisseur change, c'est le diamètre intérieur qui diminue

Pour les spécifications américaines, le diamètre du tube est donné par un nombre sans dimension : NPS (Nominal Pipe Size) $\frac{1}{2}$ " - $\frac{3}{4}$ " - 1" - 1 " $\frac{1}{4}$ 6 1" $\frac{1}{2}$ - 2"

Identification des diamètres nominaux :

Selon ANSI/ASME B36-10 NS (Nominal Size) ND 20 est un tube de diamètre nominal 20"

Selon l'ISO - API5L ND (diamètre nominal) DN 20 est un tube de 3/4"

Tuyauteries hydrauliques

Dimensionnement par le débit

	hydraulique	circulation d'huile (lubrification)	eau	azote - air 5 bars	gaz 20 b
aspiration	0,5 à 0,6 m/s	0,3 à 0,5 m/s doit tenir compte du NPSH de la pompe	0,4 à 0,5 m/s doit tenir compte du NPSH de la pompe		
conduite pression	de 3 à 5 m/s (3,5m/s maxi pour les HFC et les HFDU)	l à 3 m/s (2,5 m/s dans les réfrigérants)	long trajet : 1,6 m/s (ou 0,1 à 0,6b/100m) court trajet : 1,2 à 2,7 m/s	7 m/s (20 m/s exceptionnellement)	20 m/s maxi
conduite retour	de 1,5 à 2,5 m/s	0,5 à 1 m/s pour tuyauterie pleine 0,3 m/s pour les retour gravitaire			
drain	de 0.5 à 1 m/s.		0,9 à 1,4 m/s		

Par le calcul : Q= 6.S.V

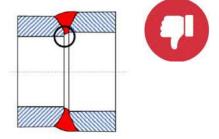
$$Di = \sqrt{\frac{21,2 \times Q}{v}}$$

Di = Diamètre intérieur en mm

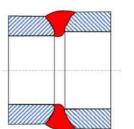
Q = Débit en l/min

v = Vitesse d'écoulement en m/s

Par un nomogramme


Tuyauteries hydrauliques Délardage des tubes

Dans la vraie vie


Le délardage n'est quasiment jamais pratiqué Choix des collets en fonction des tubes à souder Choix sur quelques diamètres usuels.

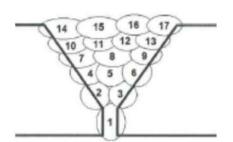
									C	ollets	a soude	er	
DN	С	milli	millimétriques avec ou sans gorge					standard pour tube gaz avec ou sa gorge					u sans
			A		В		L		A		В		L
		Inox	Acier	Inox	Acier	Inox	Acier	Inox	Acier	Inox	Acier	Inox	Acier
3/8"	24,4								18		12		30
1/2"	30,2	16	16	12	12	41	41	22	21,5	15	13	41	41
3/4"	38,1	25	25	19	19	50	50	28	28	20	19	50	50
1"	44,4	30	30	22	22	50	50	35	34	25	25	50	50
1.1/4"	50,8	38	38	28	28	55	55	43	42,8	32	32	55	55
1.1/2*	60,3	45	45	35	35	57	57	49,8	48,6	38	38	60	57
2*	71,4	60	60	50	50	57	57	61,8	61	47	51	60	57
A + 140				40-10	46.40	400.00	-					0.23	0.00

Espacement de 2 mm

Espacement de 5 mm

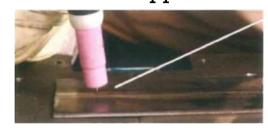
Le soudeur adaptera sa technique pour « chercher » la grosse épaisseur

Tuyauteries hydrauliques


Soudure **DMOS**

DMOS = descriptif de mode opératoire de soudage = la recette de cuisine

Un DMOS décrit :


- •Ce que l'on doit souder (matériau, le métal d'apport, dimensions, type d'assemblage...)
- •Avec quoi on doit souder (procédé, métal d'apport, gaz, support envers...)
- •Comment on doit souder (préparation des bords, position de la soudure, préchauffage, séquences des passes)

Exemple de nombre de passe, de leur disposition et de leur ordre

Exemple de procédé de soudage : il est identifié par son numéro

TIG avec fil d'apport- n°141

Par électrode enrobée – n° 111

DES	CRIPTIF DE M	ONE OPER	PATOGRA	S.C. MARKET			
			OROS/IPS/W17				
DE	SOUDAGE PH	enterative	(s.ass.25)	GROS.FOR IF			
Water to have 1 (Since male 1)	Matter de basse	Titles more	NIT BO	nort T	-	Epatematic is	
Special College	Tubers Steel		The state of	200	PERMIT	THE BOOK	
dent bedying a water		petrinis	bennett	Preside	sale speed race		
Smar Storgman 12		Class:	20	198	1039 445		
Street Street Street	Gross change		Name .		_	-	
Danes (Garee) 25 hos	Spineer (Truth Denete (Sene				-	-	
			_				
Type d'assentinge (hirt dis)		Street	Ny reptire (I				
Préparation de l'	marrishing*		- 8	quitter	des pinnes		
Special Section Section 14	mater)	- 1		(fine) o	-		
1	1	- 1					
A	V	- 1	-	-	\sim	_	
		42		1 31	K. J.		
time \/	17700	11		344	-6		
Y-	-	4.1		_	4		
7.4		3					
		4					
Prigaration des tombs Present à	or Charless spin	dreit 15 Carrier	a medicani	□ eure su	No.		
E' des passes (Face e').	0 L	100	1	The	-	_	
Position de veladage (Heiding par	But .	- 10	- 10	16	_	_	
Proditt of dept returnation y		19.6	10.96	199	-	-	
Mide de transfet (Turule) muis		Depend	Totales	1000	-	-	
		1.000,000.00		_	_	_	
Wite Papert New York: group					_	_	
Despation remakes (Danie		1444918	7494914	74480		_	
Desputor connecté» Con	SWHT.	ine 977	100m (617)	0			
Hese (Two tenc	stre-trade	Districts.	Sile Tex	4			
Ton carobage is in human	Padrollips	Services	Tools man				
2000	Andrew Control	- 1	1/4	1.0			
Promotion page one is fine that I	continue of Sect	0-125	9-17096	#+052	-	_	
Despretor romates (Drote		800	60	-	-	_	
Discoulor connection Con-		Heat F	Bust	the i	_	_	
Callet and out of his little .	1105	- 1000	8	2	-	-	
Total of the Carrier of the Street			8 8		_		
				-		_	
Tiga de courant à poiette d'une		Hr.	500	05+		_	
Bettok Water Sypte:							
Americká (mlenuty) i berg.)	133	Qt:	- 10	16.			
Timeler (listigs / Worts)	1154	2.	- 26	- 21			
these in R. Hits part, many		24	- 1				
these feets for and	F9999 1575	7		- 4			
Appear to charge \$1 metroes \$1.	U.077Y-52	1	67	1.0			
Navarred Little City To State State		-		- 10	-	-	
Total printed lags if mine has		1		- 1		_	
Temp, with passes (margan) to the			291	75			
Methopogo series passens (intripas)	neng		-	-	No.		
Soupeage (Souprag)			1.0				
Fast charlings (forbur), Some	New Continue	1.1	-	- 6			
TABLESCO Dorne D	Sector III		S compe ne	a dripe some	tive journey &	in pries	
Viscos de mordés ¿nastry rest	*08	-					
chaste to despute Cooling on							
Temp. (In paler (Hoony temp.)	*CB	10					
Some to palet (Hooling line)							
				- 100	SONTURE.		
PARMICA	AT			e, pere e	Burning Cont.		
	AT		N ion	e, pere e	Bank Ora		

Tuyauteries hydrauliquesSoudure **Méthodes de contrôle non destructif**

Ressuage

VISUEL SUITE RESSUAGE

Tuyauteries hydrauliques

Stockage

Flexibles hydrauliques

La date de fabrication du tuyau sera de l'année de la mise en place du flexible sur l'installation.

Plusieurs standards donnent des indications sur le stockage : « faites votre choix »

	Durée à cumuler		
	Tuyau non assemblé en stock	Tuyau assemblé (flexible) en stock	Durée de service : Flexible installé sur machine
ISO 8331:2014	4 ans	2 ans (au-delà, inspections visuelles et tests)	
DIN20066	4 ans	2 ans	Maxi 6 ans depuis la fabrication du tuyau
SAE J1573 ISO17165-2	10 ans si stockage conforme à l'ISO2230	10 ans sous couvert de contrôle pour tuyau caoutchouc et durée illimité pour tuyau thermoplastique	
BS 5244 : 1986	3 ans puis test pression entre 3 et 5 ans	3 ans avec test pression (8 ans maxi en cumulant avec la première colonne)	
BFPA/P47 (Issue 3)	8 ans		

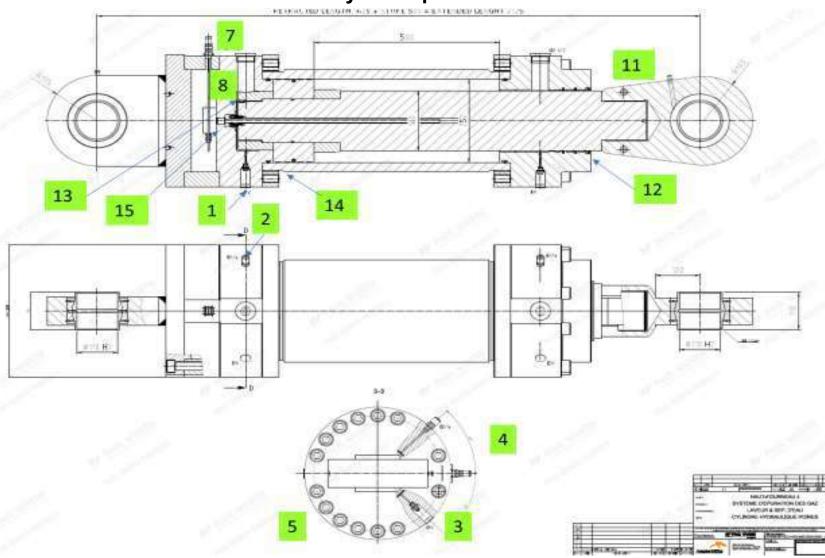
Tuyauteries hydrauliques

Durée de vie

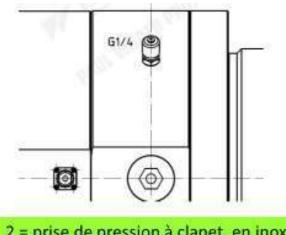
Flexibles hydrauliques

Exemple d'un flexible ayant dépassé sa fin de vie :

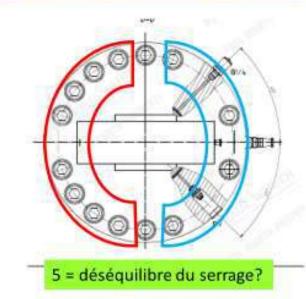
- 5 ans soit 1 million de cycles
- fluide HFC
- rayon de courbure dans la limite (changement de fournisseur et donc de caractéristiques mécanique)

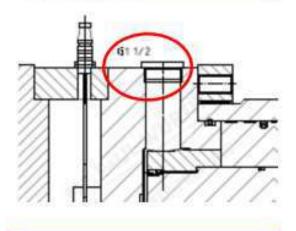

Photo du délitement intérieur du flexible

5 - Fonctionnement


Conception Vérin hydraulique

Vérin hydraulique




Vérin hydraulique

2 = prise de pression à clapet, en inox

3 =amortisseur dans lamage trop profond

7 = orifice d'alimentation taraudé